Skip to main content

Past Fellows

Monica E. Bianco, MD

The Impact of the Maternal Metabolome and Neonatal Genotype on Childhood Disorders of Glucose Metabolism

The prevalence of disorders of glucose metabolism including insulin resistance and type 2 diabetes in children is increasing, proportionate with the increasing prevalence of childhood obesity. Identifying children at risk for developing DGM and intervening prior to disease onset is critical. We will be investigating the association of maternal metabolites with development of childhood disorders of glucose metabolism. We will integrate metabolomics and genetics data together with clinical data to develop a predictive model for development of childhood disorders of glucose metabolism. The goal is to identify high-risk newborns and develop preventative interventions early.

Ryan A. Blaustein, PhD

Postdoctoral Fellow, Civil and Environmental Engineering, Northwestern University

Combined Effects of Chemotherapy and Antibiotics on the Intestinal Microbiome in Children

The human microbiome plays a critical role in gastrointestinal, immunological, and metabolic development and homeostasis. Children and adolescents receiving intensive cancer treatments are at an increased risk for developing health complications associated with microbiome dysbiosis (e.g., diabetes, asthma, obesity) and antibiotic-resistant invasive infections. To advance potential treatment strategies that mitigate such risks, our project aims to determine the impacts of chemotherapeutics and antibiotics on the gut microbiome in children using in vitro (synthetic community) and in vivo (murine) experimental systems. Using molecular biology and multi-omic methods, we will test the hypothesis that different forms of combination therapy may have overlapping and synergistic impacts on microbiome function and its potential resiliency post-treatment.

Jeffrey Calhoun, PhD

An integrative Approach to Identify Pathogenic Genomic Variants in Pediatric Epilepsy

Many pediatric epilepsy patients fail to receive a genetic diagnosis despite extensive genetic testing. We hypothesize that a significant portion of these patients harbor genetic variants missed by exon-focused sequencing technologies. To address this, we will perform genome sequencing and develop a computational framework to identify pathogenic coding variants and candidate non-coding variants to improve the genetic diagnosis of pediatric epilepsy.

Brian T. Burmeister, PhD

Senior Research Analyst at CMIC

Determining the Mechanism of Pediatric Doxorubicin-Induced Cardiotoxicity

Dr. Burmeister will be studying patient-specific responses to chemotherapy agents, specifically doxorubicin which is used to treat pediatric cancer patients. Doxorubicin is very effective in treating pediatric cancer, however one of the drug’s side effects, cardiotoxicity, limits it’s usefulness. As a result, Dr. Burmeister will be working to determine the molecular mechanisms that regulate doxorubicin-induced cardiotoxicity in order to identify new targets for drug discovery.

Matthieu K. Chardon, MS, PhD

Research Assistant Professor, Physiology, Northwestern University At Chicago

Computer-Controlled Pediatric Regional Anesthesia to Improve Patient Safety

Matthieu Chardon, PhD, will be developing a tool to measure the effectiveness of local anesthetic dosage in children with the goal of reducing dosage and increasing safety. “Regional anesthesia in pediatrics has dramatically increased over the past 30 years because it provides localized pain relief, diminishes opioid use and facilitates earlier mobilization, internal feeding and hospital discharge,” Dr. Chardon says. “It is also used frequently due to concerns about the effect of general anesthesia on brain development.” Nonetheless, Dr. Chardon explains that there are several concerns surrounding local anesthesia, and that there are no tools to determine its effectiveness or toxicity in real time. As a result, he is seeking to develop a solution in partnership with his mentors Santhanam Suresh, MD, Professor of Anesthesiology and Pediatrics, and Charles Heckman, MD, Professor of Physiology/Physical Medicine and Rehabilitation and Physical Therapy and Human Movement Sciences.

Bimal P. Chaudhari, MD, MPH

Assistant Professor, Pediatrics, Research Inst Nationwide Children's Hospital

Electronic Medical Record Integration of Genomic Testing Results

Bimal Chaudhari, MD, MPH, is developing a knowledge base that will deliver genomic testing results to non-geneticist clinicians via an electronic medical record. Many patients may benefit from genomic testing, but not all physicians feel prepared to take action based on the results of genetic testing. However, this new knowledge base will address this problem by offering clinical decision support that is patient specific and compatible with a physician’s workflow. “Right now, methods for DNA sequencing are fairly robust and well-developed but methods of sequence interpretation are evolving,” Dr. Chaudhari says. “The result is that, unlike an X-ray or blood culture, the interpretation of a sequencing test result can change over time. Results may also be more or less relevant at different points in time. The TL-1 program provides me the support I need to develop my knowledge base in this area and gain practical experience. I'm developing collaborations in fields I didn't even know existed a year ago. My hope is that this relatively novel collaboration is the foundation for sustained extra-mural research funding.”

Ashley Kraus, PhD

Postdoctoral Trainee

Determinants of Tobacco use and Barriers to Tobacco Cessation in Sexual and Gender Minority Adolescents

Sexual and gender minority (SGM) adolescents are at high risk for tobacco use. Tobacco use in SGM youth is problematic as it is associated with a higher risk of preventable cancers and ultimately heightened rates of morbidity and mortality. It is critical to understand precursors to, and intervene on, risk behaviors that often begin in adolescence and can ultimately lead to preventable cancer (e.g., tobacco use). Thus, my projects seek to identify determinants of tobacco use and barriers to tobacco cessation in SGM adolescents in order to ultimately inform a technology-based intervention to aid in tobacco-use prevention and cessation efforts in this population.

Daniel Giles Fort, MPH PhD

Director of Data Science/Biomedical Informatics Research at Ochsner Health System

Informatics Interventions to Accelerate Pediatric Clinical Trial Recruitment

Dan Fort, PhD, MPH, will be researching ways to use informatics in order to accelerate pediatric clinical trial recruitment. To do this, he will be looking at patterns in clinical trial recruitment success and failure as well as digging into historical cohort selection queries for insights into how they might be modified to increase the number of patients identified for recruitment. “This award is vital early career support, allowing me to build a solid body of investigatory, preliminary work for R-scale funding proposals as well as address important skill gaps in team and decision sciences,” said Dr. Fort.

Lajja Desai, MD

Pediatric Cardiology Fellow, Lurie Children's Hospital Of Chicago

Novel Non-Invasive cMRI Technique to Estimate Continuous Oxygen Saturations in Pediatric Heart Disease

Despite gains in survival, decreased quality of life and morbidity continue to be challenges in congenital heart disease (CHD). Until recently, blood oxygen content in the heart and central vessels (i.e., "oximetry") has only been measured by an invasive technology: catheterization. However, this technique does not take into account complex streaming effects in complex CHD. The course and extent of deoxygenated blood streaming likely contributes to poor tissue growth and abnormal neurodevelopment. Non-invasive data obtained with cardiac magnetic resonance imaging (cMRI) has improved surveillance capabilities in these children and adults. Lurie Children’s Hospital and Northwestern University are leaders in advanced cMRI. Our long-term goal is to establish an accurate, non-invasive and non-Gadolinium-contrast cMRI technique (T2 mapping) to estimate continuous oxygen saturations in the heart and vasculature.

Michael Dominick DiVito, PhD

Postdoctoral Fellow, Department of Surgery, Northwestern University

Differentiating Hepatocytes from iPSCs to Treat Pediatric Metabolic Liver Disease

Dr. DiVito will be studying ways to treat pediatric metabolic liver deficiencies using induced pluripotent (iPS) stem cells derived from liver cells. He plans to improve iPS cell differentiation protocols and to develop an infusion method for these cells with the overall goal of making both in vitro and living models of metabolic liver diseases that can be used to develop stem cell therapies and other treatments for these diseases. “I am excited at the potential of using stem cells with our lab’s bioreactor systems to develop disease models and cell therapies for pediatric metabolic diseases,” Dr. DiVito says. “With this award and the resources it offers, I feel I am in a great position to fulfill these goals. I am excited to see the output of this project after two years under the TL1 training program” Because the TL1 program promotes interdisciplinary mentorship, Dr. DiVito will be able to not only have the opportunity to enhance his engineering knowledge but also acquire new knowledge of hepatology, stem cell biology and other topics important to his research.

Adrian Figg, PhD

Gene Targeting and Controlled Release of Therapeutics using SNAs to Treat DIPG

Diffuse intrinsic pediatric glioma (DIPG) is an aggressive, malignant pediatric brain tumor. DIPG is a rare form of pediatric cancer affecting 200-300 patient annually, but is nearly uniformly fatal with a mean survival of only 18 months after diagnosis.1 Due to the tumor anatomic location within the brainstem coupled with its densely infiltrative nature, surgical removal is not possible. Additionally, chemotherapeutics that are effective for adult high-grade glioma, such as temozolomide (TMZ) treatment, are not effective for treating DIPG, while radiation therapy may temporarily alleviate symptoms but has no effect on overall survival. Dr. Figg's project aims to improve DIPG treatment targeting the H2K27M mutation using spherical nucleic acids (SNAs) as potent gene therapy and drug delivery vessels. Dr. Figg recently accepted a faculty position in the chemistry department at Virginia Tech University.

Martha Ingram, MD

Improving Data Capacity and Predictive Capability of NSQIP-P Using Design of Experiment Methodology

Dr. Ingram is applying novel industrial engineering and management science methodologies to assess quality outcomes for children undergoing surgery. The American College of Surgeons National Surgical Quality Improvement Project-Pediatric (NSQIP-P) is considered the premiere quality improvement program for children undergoing surgery. The biggest limitation to expanding this beneficial program is rooted in the burden of data collection. By using innovative engineering methodologies, Dr. Ingram and her mentoring team will reduce the data collection burden and expand the impact of the program.

Alicia Lenzen, MD

Assistant Professor, Department of Pediatrics, Hematology, Oncology, and Stem Cell Transplantation, Lurie Children's Hospital Of Chicago

A Novel siRNA Approach for Targeting Immunosuppresive IDO1 in Pediatric Brain Tumors

Alicia Lenzen, MD, will be studying a novel form of treatment for pediatric brain tumors that will use immunotherapy combined with nanotechnology. She will be researching the inflammation-induced expression of indoleamine 2,3 deoxygenase 1 (IDO1), its role in suppressing tumor immunity and therefore its promising therapeutic reactivation of the immune response against brain tumors. Dr. Lenzen will also integrate nanotechnology as a direct delivery mode into central nervous system tumors in order to create precise targeting. “This TL1 training will facilitate the building blocks of that research foundation now, obtaining findings related to the development of novel treatment regimens using mouse brain tumor models, with the possibility of direct translation into patients,” Dr. Lenzen says. “It will also allow me a look into multi-disciplinary work in order to create the best projects.”

Siam Racharaks, PhD

Postdoctoral Trainee

Engineering a CRISPRi Phagemid System to Better Treat Infection in Young Children with Cystic Fibrosis

Cystic fibrosis (CF) is an autosomal recessive disease that affects approximately 30,000 people in the United States, of whom 75% were diagnosed by age 2. As a result of diminished lung function, roughly 50% of all people with CF have chronic Pseudomonas aeruginosa (Pa) infections which are associated with increased morbidity and mortality. To improve infection treatment in young children with CF, we propose the development of a novel phagemid-based therapy to combat Pa infections. Phagemids—synthetic plasmids packaged into a functional infectious phage particle—are highly specific and have unique characteristics which mitigate the release of endotoxins and prevent escape of progeny phages into the surrounding environment. To create an effective therapy, phagemids will be engineered to repress Pa genes involved in biofilm and antibiotic resistance development by utilizing CRISPR interference (CRISPRi) technology. The proposed studies will provide the foundation to design desperately needed new treatments for lung infections in children with CF.

Allison Letkiewicz, PhD

Postdoctoral Trainee

Inhibitory Control as a Transdiagnostic Correlate of Psychopathology in Youth

Mental health disorders are among the leading causes of disability among youth worldwide. Given that disorders co-occur more often than they occur independently, it is important that research examines potential transdiagnostic mechanisms that contribute to multiple forms of psychopathology. My project will test whether impaired inhibitory control, which is defined as the ability to override automatic or prepotent responses, is a transdiagnostic correlate of internalizing and externalizing psychopathology among youth using state-of-the art computational modeling and advanced neuroimaging methods. Advanced computational modeling holds the potential to quantify inhibitory processes with greater precision than traditional methods and neural network approaches can help to identify systems of coordinated neural circuitry that mediate specific components of inhibitory control. Ultimately, the goal of this work is to identify treatment targets and inform intervention approaches aimed at ameliorating multiple mental health conditions in youth.

Yen-Sheng Lin, MS, PhD

Assistant Professor, UT Southwestern

The Effects of tDCS on Abnormal Synergistic Coupling in Children with CP

Gait deviations in children with hemiplegic cerebral palsy are multifactorial including sagittal plane impairments at the ankle and knee combined with hip hiking and circumduction. These kinematic patterns are metabolically inefficient and may lead to significant musculoskeletal comorbidities, including joint diseases. While it has been proposed that weakness, spasticity and leg length discrepancy may contribute, the underlying factors remain unknown. We argue that these impairments may be a manifestation of aberrant motor coordination. The goal of this project is to construct a training paradigm to help shape the underlying motor sequence during gait in children with cerebral palsy with hemiparesis. The technique will leverage our understanding of the motor control of hemiparetic gait and neuromodulation for locomotor training.

Ethan Johnson, PhD

Postdoctoral Trainee

Detecting cardiovascular abnormalities in pediatric bicuspid aortic valve patients using easy, low-cost chest vibration measurements

Cardiovascular abnormalities caused by bicuspid aortic valve, a congenital malformation, are associated with high risk of acquired valve disease and aortopathy. Patients with these conditions require regular clinical monitoring to ensure that disease progression is detected and managed appropriately, but this can entail tests such as diagnostic MRI, which are time- and cost-intensive and can be especially burdensome for pediatric patients. My project will explore the creation of an accessible, easy-to-use technology for detecting cardiovascular abnormalities through measurements of the physical vibrations on the chest’s surface of pediatric patients with aortic valve disease. In previous research using these measurements from adults, we have shown good performance for distinguishing healthy cardiovascular function from abnormal flow function associated with aortic valve disease. We will extend these promising findings to the pediatric population, who may benefit greatly from a low-cost and easy-to-use test that streamlines clinical care.

Sarah Boyer

Predoctoral Trainee

NIR spectrometers to detect difference in molecular/spectroscopic signatures of MIH teeth

Molar incisor hypomineralization (MIH) is a dental congenital disease with a prevalence thought to be as high as 40% with uncertainty due to widespread underdiagnosis caused by no standard diagnosis procedure. Even with preventative measures, MIH teeth still suffer from rapid dental decay. Many children with MIH have other preexisting illnesses and further suffer from the dental sensitivity, pain and cosmetic issues caused by MIH. The mechanism behind the condition is not well understood and difficult to study because few teeth are available for scientists to investigate because of a good policy of restoring teeth until extraction is the only option. Due to the high impact and the need for further knowledge of this condition, MIH needs to be further studied non-destructively, intra-orally and painlessly. One exciting possibility is the use of NIR spectrometers to detect difference in molecular/spectroscopic signatures of MIH teeth. Working closely with residents at Lurie’s Children Hospital, the device will be used to obtain spectra from clinical spaces that can be added to a library of known spectra. Machine and human learning will be used to then develop a protocol for identifying MIH teeth using the spectra obtained. If this technique is successful, this may lead to a comprehensive approach to diagnosing MIH lesions. Further, the information extracted from the spectra may lead to more knowledge about the etiology of MIH.

Natalie Roebuck, MD

Pediatrics Fellow, Northwestern University At Chicago

Dynamic Energy Balance in the ICU

Natalie Roebuck is studying and developing novel energy equations used to estimate calorie and fluid goals at the bedside in the ICU. Current equations can under- or over-estimate calorie goals in the pediatric ICU population by up 400 percent. This level of inaccuracy in energy balance leaves patients vulnerable to malnutrition, infection and prolonged mechanical ventilation. Along with collaborators in Applied Mathematics at Northwestern University, she will be developing and validating a novel equation to predict energy requirements in the pediatric ICU. She will validate this method in the Lurie Pediatric ICU and Pediatric Cardiac ICU while integrating dynamic physiologic data to improve our ability to account for dynamic energy change in critical illness. Natalie seeks to integrate clinical medicine with data science in order to gain usable knowledge at the bedside to improve care during pediatric critical illness.

Kathryn McElhinney, MD

Postdoctoral Trainee

Utilizing 3D Bioengineering to Study the Biochemical and Environmental Triggers of Ovarian Follicle Growth

Lifesaving chemotherapy treatments in the pediatric population frequently induce premature ovarian insufficiency (POI) leading to reduced ovarian hormones and infertility. Giving survivors of pediatric cancers the option to have biological children is a key quality of life improvement measure. Women with POI also experience comorbidites related to loss of ovarian hormones and a shorter life expectancy. Ovarian tissue cryopreservation is the only fertility preserving option for children who are not mature enough to ovulate. This preserved tissue can then be transplanted back into the patient in order to restore hormone function and fertility. However, premature activation and depletion of primordial follicles within cryopreserved ovarian tissue leads to this truncated function of transplanted ovarian tissue. We hypothesize that both biochemical and physical cues control primordial follicle activation. We will use bovine ovaries as a mono-ovulatory model of human ovaries to test the the role of EMILIN1, an ovarian glycoprotein, in maintaining quiescence in isolated primordial follicles. We will also investigate the role of the ovarian microenvironment stiffness on primordial follicle activation and growth using a 3D printed gelatin scaffold.

Jake Winter

Predoctoral Trainee

Duchenne Muscular Dystrophy

Duchenne Muscular Dystrophy (DMD) is a devastating monogenic disease that affects ~1 in 3500 males. The disease is caused by mutations in the dystrophin gene that prevent production of the dystrophin protein and lead to progressive skeletal and cardiac muscle degeneration and ultimately death during the mid-twenties. A technique known as exon skipping has emerged as a promising treatment modality for a number of DMD cases that can circumvent disruptive mutations and restore the reading frame of the dystrophin gene to drastically improve the symptoms of the disease. While FDA approved drugs to accomplish exon skipping have recently been approved, they require repeated injections to achieve an effect and are extremely expensive. We have recently developed a gene editing platform termed CRISPR-SKIP that uses CRISPR-Cas9 single base editors to achieve permanent exon skipping by editing DNA directly. We have also developed a platform for delivering these gene editing tools using adeno-associated viral (AAV) vectors, which have proven to be a safe and effective vehicle for gene delivery. This project aims to couple these two advances to develop a one-time gene-editing treatment for DMD that will result in permanent exon skipping and lasting therapeutic benefit for the patient.

Steven Papastefan, MD

Postdoctoral Trainee

In utero gene therapy via an endogenous, placenta-specific mRNA delivery system

In utero gene therapy (IUGT) is an ideal treatment for placental and developmental disease due to the potential to prevent irreversible damage that develops within the womb. Clinical translation of IUGT is limited by inadequate delivery strategies which lack target specificity and carry risk of immunogenicity and insertional mutagenesis. IUGT is particularly well suited for the treatment of fetal growth restriction, a leading cause of infant mortality that incurs lifelong susceptibility to cardiopulmonary and neurological disease. My project will investigate a delivery system composed of the endogenous retroelement PEG10 that recapitulates natural processes of mRNA transfer within the placenta, via packaging of cargo mRNA within virus-like particles. We aim to study the fundamental mechanisms by which PEG10 mediates mRNA transfer to placental trophoblasts during fetal development, and subsequently to repurpose this technology for targeted, minimally-immunogenic gene therapy delivery to the placenta. Our ultimate objective is to design a gene therapy delivery system capable of delivering therapeutic mRNA for the treatment of a wide range of placental and fetal diseases, including fetal growth restriction.

Alina Yu-Hsin Rwei, PhD

Assistant Professor of Chem Eng Chemical Engineering, Technische Universiteit Delft

Innovative Physiologic Recording Devices Skin Patch Sensors as a Substitute for Continuous Heart Rate and Blood Pressure Monitoring in the Neonatal Intensive Care Unit

Millions of premature infants worldwide suffer from infant respiratory distress syndrome, which could be fatal. It is important to be able to detect the vital signals, such as blood oxygenation, blood pressure and heart rate, in a safe and continuous manner. Current methods in the detection of neonatal blood flow are invasive, cumbersome and difficult to operate. In this project, I am developing a wearable, non-invasive skin patch for continuous monitoring of blood flow that could be mounted on the skin of neonates.

Sarah Walker, MD

Postdoctoral Trainee

Machine Learning to Predict Fluid Responsiveness in Hypotensive Children

Over 600,000 children worldwide are diagnosed with sepsis-induced shock each year, and many more suffer hypotension and shock from varied etiologies including dehydration, trauma, surgery, and other forms of dysregulated inflammation. Associated mortality rates for septic shock are as high as 50% and mortality from other shock etiologies is poorly quantified. Though pediatric shock management guidelines for resuscitation focus on early, rapid fluid administration, all patients in shock do not respond to this form of management. Identification of children who experience sustained clinical improvement after fluid bolus administration (“fluid responders”) would allow for personalized intervention and avert prolonged shock and excessive fluid administration that can lead to end-organ damage and mortality. Our preliminary research shows that most known adult predictors of fluid response perform poorly in children or have technical challenges that impede widespread use at the bedside. Consequently, we have a critical need for easily-deployed, real-time prediction of fluid response to personalize and improve resuscitation for children in shock. Our central hypothesis is that a machine learning-based prediction model which combines both continuous physiologic monitor data and patient-level clinical variables will accurately predict which children will be “fluid responders” with sustained response to fluid bolus.

Suvai Gunasekaran, PhD

Postdoctoral Trainee

Non-contrast Fibrosis Quantification CMR Sequence

Tetralogy of Fallot (TOF) is the most common cyanotic heart condition in children. The most frequent and deadly complication in late childhood and young adulthood for TOF patients is ventricular tachycardia (VT), which is caused by myocardial fibrosis. The best treatment for VT is ablation, during which areas of fibrosis can be detected and ablated, but current methods are not robust. Prior studies have shown that pre-ablation assessment of myocardial fibrosis using cardiovascular MRI (CMR) improves procedural success for VT ablation. However, current CMR fibrosis imaging techniques require the use of a gadolinium contrast agent, which may have adverse health effects. Therefore, my project aims to develop a non-contrast fibrosis quantification CMR sequence using T1ρ mapping for measuring fibrosis in TOF patients.

Meredith Taylor, MD

Postdoctoral Trainee

Elucidating the Role of Mitophagy in Preservation and Reperfusion during Solid Organ Transplantation

To date, there have been little to no advances in organ preservation prior to implantation. One such strategy can be to pre-treat donor organs prior to implantation. Microvascular endothelial cells (ECs) lining the vessels of the graft are the first to be affected by the ischemic and hypoxic conditions in cold preservation solution as well as by reperfusion injury once the graft is implanted. This ischemic-reperfusion injury (IRI) damages the EC barrier and activates the ECs to trigger a robust adaptive immunity response. Therefore, pre-treating the donor organ during the preservation phase to target the ECs is a viable strategy to dampen the activation of ECs and minimize immune allograft recognition. This is critical in the setting of pediatric and adolescent transplant, as durable organs, longevity, and the minimization of the toxic effects of pharmacological immunosuppression is of utmost importance. Recent data shows inhibiting mitochondrial fission and promoting mitochondrial fusion has a protective effect and significantly reduces EC immunogenicity. The exact mechanism(s) of this protective effect is unknown. Our goal is to assess the impact of mito morphology on autophagy and mitophagy in ECs during IRI with the goal for a translational pre-treatment solution model for transplant organs.

Mark D. Struble, PhD

Peptide amphiphile nanofibers extend and enhance BMP4 function for improved therapeutic efficacy on pediatric high grade gliomas

Among pediatric brain tumors, high-grade gliomas are the most devastating. Therapeutic resistance in pediatric gliomas is primarily due to a population of glioma cells with stem-like features, referred to as glioma stem cells (GSCs). The growth factor bone morphogenetic protein 4 (BMP4) is known to promote GSC differentiation, which increases cell sensitivity to cytotoxic therapies. We hypothesize that BMP4 is a promising adjuvant for glioma treatment. However, due to the relatively short half-life of BMP4 in vivo, a delivery system needs to be developed for administering BMP4 in a clinical setting. We propose delivering BMP4 to the site of the glioma using peptide amphiphile (PA) nanostructures, which are known to extend the biological function of bound growth factors. The primary goal of this project is twofold: 1) to evaluate the clinical potential of a BMP4 nanostructure delivery platform for treating pediatric malignant glioma, and 2) create and test a new PA nanostructure containing relevant chemotherapeutic agents that can be used in combination with the BMP4 nanostructure.

Susan M. Slattery, MD

Instructor, Department of Pediatrics, Northwestern University

Process Vulnerabilities in Hospital Discharge after Neonatal Intensive Care Unit Stays

Dr. Slattery will be focusing her research on the timing of a safe transition home from the Neonatal Intensive Care Unit. Along with her mentors, she hopes to develop a valid, reliable predictive tool using data captured in the Electronic Health Record.

James Glazer, PhD

Postdoctoral Trainee

Separate Neurodevelopmental Risk Pathways for Depression and Comorbid Anxiety

Depression and anxiety are among the most prevalent mental health disorders in youth. Before the age of 18, 20% will meet the criteria for at least one depressive or anxiety disorder, and over 10% will meet the criteria for both. Co-occurring depression and anxiety worsen prognosis and treatment outcomes compared with either condition alone, leading to greater impairment, symptom severity, and recurrence. Although one of the most robust risk factors for depression in youth is a family history of depression, the neurodevelopmental mechanisms of this familial transmission are unclear. For example, offspring of mothers with a history of depression are also more likely to develop comorbid anxiety disorders, making it particularly difficult to separate familial risk for unipolar depression from risk for comorbid depression and anxiety. Prior work suggests the pathway from maternal depression to offspring with and without comorbid anxiety disorders may depend on distinct patterns of neural activity to positive and negative laboratory stimuli. Specifically, symptom dimensions unique to depression are associated with neural hypoactivation to rewards while shared symptom dimensions are associated with neural hyperactivation to making errors. My project uses an electroencephalogram to examine neural responses to rewards and errors among siblings and mother/daughter dyads. The objective of my project is to test the hypothesis that blunted response to rewards is a mechanism for familial risk for depression and abnormal error processing is a mechanism for familial risk for comorbid depression and anxiety. Results will help identify early risk factors for depression and anxiety to facilitate preventative interventions that specifically target underlying neural dysfunction in one or both domains.

Melissa Pergande, PhD

Postdoctoral Trainee

Determining the Extent to Which Neurofilament Accumulation Causes GAN Pathogenesis and translation to a viable therapeutic option

Giant axonal neuropathy (GAN) is an autosomal recessive disorder which presents in childhood and results due to mutations in the gene encoding gigaxonin. Clinical manifestations include a clumsy gait and a loss of peripheral strength and sensation, with rapid escalation to cognitive defects, seizures, brainstem dysfunction and ultimately death. A major hallmark of GAN is the accumulation of neurofilaments (NFs). Previous studies have shown that NFs are degraded by the ubiquitin-proteasome pathway where an important aspect of this process is the targeting of NFs for degradation by ubiquitination via gigaxonin. We are using proteomics to dissect the role of GAN, which is an E3 ligase adaptor that degrades NFs and likely other proteins.

Christopher McCauley, MD

Postdoctoral Trainee

Investigating the role of stromal cells in folliculogenesis supported by a transplantable scaffold

Chemotherapeutic regimens delivered to pediatric patients can result in premature ovarian insufficiency (POI) and lead to reduced ovarian hormone production and infertility. Currently, the only fertility preservation option for prepubescent female patients is ovarian tissue cryopreservation (OTC). Autotransplantation of cryopreserved ovarian tissue can restore hormone production and fertility. The Laronda Lab seeks to bioengineer a transplantable ovarian scaffold that will restore fertility in patients who survive pediatric cancer but develop POI and infertility from treatment. Stromal cells are essential components to folliculogenesis in vivo as they are the source of theca, hormone-producing cells, and modulate vessel formation and immune responses within the ovary. We aim to further delineate the role of stromal cells in folliculogenesis within our bioengineered and transplantable system. Specifically, our goal is to (1) investigate if stromal cells produce matrisome proteins that match the ovarian compartment from which they came, (2) delineate what paracrine factors are secreted by stromal cells, and (3) investigate if direct contact with stromal cells is required for in vitro primordial follicle growth.

Abhineet “Monti” Sharma, MD

How Factors That Affect the Placenta Change Immune Cells in the Fetus

In utero exposure — exposures that occur while babies are inside their mothers — are known to affect postnatal outcomes. In the case of premature infants, in utero factors play a role in the development of diseases associated with prematurity. My work focuses on how factors that affect the placenta, such as inflammation, infection, and poor blood supply, change immune cells in the fetus. Since these immune cells survive and divide in various tissues after birth, it's possible that changes that occur in the placenta alter the postnatal function of certain immune cells in our body. To study this, our lab collects cord blood at the time of delivery and purifies specific immune cells. We then use computational biology methods to study what these cells are doing and what they are capable of.

Alison Lehane, MD

Postdoctoral Trainee

Defining and Reducing Waste in the Operating Room-An Effort to Combat Climate Change

Climate change, driven by greenhouse gases (GHGs) in the atmosphere, represents the planet's greatest public health crisis. Links between climate change and health problems include excessive heat-related illnesses, waterborne infectious diseases, and exacerbation of cardiovascular and respiratory diseases due to declining air quality. Children are particularly vulnerable to climate change-related health concerns. The healthcare sector is responsible for an estimated 10% of U.S. GHG emissions Specifically operating rooms (ORs) are estimated to produce 70% of hospital waste. There is a lack of consensus on the methods to quantify waste/environmental impact or report costs/cost savings. This lack of consensus in reporting is a major gap in our ability to implement quality and process improvement efforts to reduce GHGs and improve sustainability. As hospitals navigate changes in processes, such as the institution of recycling and reprocessing programs, it is imperative to evaluate outcomes (e.g., waste reduction, cost-savings) as well as barriers and facilitators of implementation (e.g., adoption, adherence, fidelity Our aim is to 1) Define a generalizable method to quantify waste and environmental impact and 2) Evaluate implementation of a waste reduction program within the children's hospital.

Follow NUCATS on

Participating Institutions: